目录介绍:
- 1、微地震数据采集当中采集的数据主要包括哪些参数?
- 2、地震力的计算过程?
- 3、地震123级的划分根据十进制吗?力量怎么判断是几等级?有专门测量力工具吗?震了之后通过卫星看出来?
- 4、D3C地震采集观测系统及主要参数
- 5、采样率100 一个小时多少数据 地震计
微地震数据采集当中采集的数据主要包括哪些参数?
数据采集是微地震监测的基础,对硬件设备要求较高。由于微地震的特性所致,必须用高采样率、宽频带、连续记录、宽动态范围(96dB)进行微地震信号采集。常规VSP检波器的谐振频率为200~400Hz。因此,它不能以宽带精确地测定质点的运动。另外,由于常规检波器弹簧片的非轴向激励而出现伪波型,在高出自然频率约25倍的某一频率上产生谐振效应。因而必须使用一种先进的井中地震检波器,以便把有用的频率范围扩展到1500Hz以上。使用固态的加速度计作为传感装置,可以消除伪波型、相位误差以及高频噪声的限制。目前国外大多数使用多分量多级VSP加速度检波器串。
详见:;hl=zh-CNct=clnkcd=2gl=cnst_usg=ALhdy2_gjO50tUO8SheixwGQD2YLC2vqpg
地震力的计算过程?
(一)地震力与地震层间位移比的理解与应用
⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。
⑵计算公式:Ki=Vi/Δui
⑶应用范围:
①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。
②可用于判断地下室顶板能否作为上部结构的嵌固端。
(二)剪切刚度的理解与应用
⑴规范要求:
①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。
②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。
⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。
⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。
(三)剪弯刚度的理解与应用
⑴规范要求:
①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。
②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。
⑵SATWE软件所采用的计算方法:高位侧移刚度的简化计算
⑶应用范围:可用于执行《高规》第E.0.2条规定的工程的刚度比的计算。
(四)《上海规程》对刚度比的规定
《上海规程》中关于刚度比的适用范围与国家规范的主要不同之处在于:
⑴《上海规程》第6.1.19条规定:地下室作为上部结构的嵌固端时,地下室的楼层侧向刚度不宜小于上部楼层刚度的1.5倍。
⑵《上海规程》已将三种刚度比统一为采用剪切刚度比计算。
(五)工程算例:
⑴工程概况:某工程为框支剪力墙结构,共27层(包括二层地下室),第六层为框支转换层。结构三维轴测图、第六层及第七层平面图如图1所示(图略)。该工程的地震设防烈度为8度,设计基本加速度为0.3g.
⑵1~13层X向刚度比的计算结果:
由于列表困难,下面每行数字的意义如下:以“/”分开三种刚度的计算方法,第一段为地震剪力与地震层间位移比的算法,第二段为剪切刚度,第三段为剪弯刚度。具体数据依次为:层号,RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层。
其中RJX是结构总体坐标系中塔的侧移刚度(应乘以10的7次方);Ratx1为本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均刚度80%的比值中的较小者。具体数据如下:
1,7.8225,2.3367,否/13.204,1.6408,否/11.694,1.9251,否
2,4.7283,3.9602,否/11.444,1.5127,否/8.6776,1.6336,否
3,1.7251,1.6527,否/9.0995,1.2496,否/6.0967,1.2598,否
4,1.3407,1.2595,否/9.6348,1.0726,否/6.9007,1.1557,否
5,1.2304,1.2556,否/9.6348,0.9018,是/6.9221,0.9716,是
6,1.3433,1.3534,否/8.0373,0.6439,是/4.3251,0.4951,是
7,1.4179,2.2177,否/16.014,1.3146,否/11.145,1.3066,否
8,0.9138,1.9275,否/16.014,1.3542,否/11.247.1.3559,否
9,0.6770,1.7992,否/14.782,1.2500,否/10.369,1.2500,否
10,0.5375,1.7193,否/14.782,1.2500,否/10.369,1.2500,否
11,0.4466,1.6676,否/14.782,1.2500,否/10.369,1.2500,否
12,0.3812,1.6107,否/14.782,1.2500,否/10.369,1.2500,否13,0.3310,1.5464,否/14.782,1.2500,否/10.369,1.2500,否
注1:SATWE软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”;
注2:在SATWE软件中没有单独定义薄弱层层数及相应的层号;
注3:本算例主要用于说明三种刚度比在SATWE软件中的实现过程,对结构方案的合理性不做讨论。
⑶计算结果分析
①按不同方法计算刚度比,其薄弱层的判断结果不同。
②设计人员在SATWE软件的“调整信息”中应指定转换层第六层薄弱层层号。指定薄弱层层号并不影响程序对其它薄弱层的自动判断。
③当转换层设置在3层及3层以上时,《高规》还规定其楼层侧向刚度比不应小于相邻上部楼层的60%。这一项SATWE软件并没有直接输出结果,需要设计人员根据程序输出的每层刚度单独计算。例如本工程计算结果如下:
1.3433×107/(1.4179×107)=94.74%60%
满足规范要求。
④地下室顶板能否作为上部结构的嵌固端的判断:
a)采用地震剪力与地震层间位移比
=4.7283×107/(1.7251×107)=2.74>2
地下室顶板能够作为上部结构的嵌固端
b)采用剪切刚度比
=11.444×107/(9.0995×107)=1.25<2
地下室顶板不能够作为上部结构的嵌固端
⑤SATWE软件计算剪弯刚度时,H1的取值范围包括地下室的高度,H2则取等于小于H1的高度。这对于希望H1的值取自0.00以上的设计人员来说,或者将地下室去掉,重新计算剪弯刚度,或者根据程序输出的剪弯刚度,人工计算刚度比。以本工程为例,H1从0.00算起,采用刚度串模型,计算结果如下:
转换层所在层号为6层(含地下室),转换层下部起止层号为3~6,H1=21.9m,转换层上部起止层号为7~13,H2=21.0m.
K1=[1/(1/6.0967+1/6.9007+1/6.9221+1/4.3251)]×107=1.4607×107
K2=[1/(1/11.145+1/11.247+1/10.369)×107=1.5132×107
Δ1=1/K1 ; Δ2=1/K2
则剪弯刚度比γe=(Δ1×H2)/(Δ2×H1)=0.9933
(六)关于三种刚度比性质的探讨
⑴地震剪力与地震层间位移比:是一种与外力有关的计算方法。规范中规定的Δui不仅包括了地震力产生的位移,还包括了用于该楼层的倾覆力矩Mi产生的位移和由于下一层的楼层转动而引起的本层刚体转动位移。
⑵剪切刚度:其计算方法主要是剪切面积与相应层高的比,其大小跟结构竖向构件的剪切面积和层高密切相关。但剪切刚度没有考虑带支撑的结构体系和剪力墙洞口高度变化时所产生的影响。
⑶剪弯刚度:实际上就是单位力作用下的层间位移角,其刚度比也就是层间位移角之比。它能同时考虑剪切变形和弯曲变形的影响,但没有考虑上下层对本层的约束。
三种刚度的性质完全不同,它们之间并没有什么必然的联系,也正因为如此,规范赋予了它们不同的适用范围。
地震123级的划分根据十进制吗?力量怎么判断是几等级?有专门测量力工具吗?震了之后通过卫星看出来?
震级是表征地震强弱的量度,是划分震源放出的能量大小的等级。单位是“里氏”,通常用字母M表示,它与地震所释放的能量有关。释放能量越大,地震震级也越大。震级每相差1.0级,能量相差大约32倍;每相差2.0级,能量相差约1000倍。也就是说,一个6级地震相当于32个5级地震,而1个7级地震则相当于1000个5级地震。目前世界上最大的地震的震级为9级。
地震震级分为九级,一般小于2.5级的地震人无感觉,2.5级以上人有感觉,5级以上的地震会造成破坏。简称震级。
1. 一般将小于1级的地震称为超微震;
2. M≥1级,小于3级的称为弱震或微震,如果震源不是很浅,这种地震人们一般不易觉察。
3. M≥3级,小于4.5级的称为有感地震,这种地震人们能够感觉到,但一般不会造成破坏。
4. M≥4.5级,小于6级的称为中强震(如9·7彝良地震),属于可造成破坏的地震,但破坏轻重还与震源深度、震中距等多种因素有关。
5. M≥6级,小于7级的称为强震(如8·3鲁甸地震,2·6高雄地震)。
6. M≥7级,小于8级的称为大地震(如8.8九寨沟地震,4·14玉树地震,4.20雅安地震,7.18俄罗斯堪察加半岛地震)。
7. 8级以及8级以上的称为巨大地震(如5·12汶川地震,3·11日本地震)。
发震时刻、震级、震中统称为“地震三要素”。
D3C地震采集观测系统及主要参数
根据试验结果分析和现有设备条件,最终确定的3D3C地震采集观测系统及主要参数如下:
(1)观测系统
观测系统类型:规则束状12线14炮制,端点激发
接收道数:60×12=720道
接收线数:12条
接收道距:20m
接收线距:40m
叠加次数:36次(纵向6次,横向6次)
CDP网格:10m×10m
纵向炮检距:最小30m;最大1210m
横向炮检距:最小10m;最大470m
最小炮检距:31.62m
最大炮检距:1298.07m
炮点网度:100m×20m
检波点网度:20m×40m
(2)仪器参数
仪器使用法国产的408UL数字地震仪器数据采集系统,全频接收
采样率:0.5ms
记录长度:3s
(3)激发参数
震源:单井激发,高速成型炸药
井深:20m
药量:2.0kg或2.5kg,遇到村庄等酌量减少
(4)接收参数
检波器:三分量数字检波器(加速度型),每道1个检波器,挖坑20~30cm埋置。
采样率100 一个小时多少数据 地震计
地震数据采样率1ms, 就是1ms 采样一次.
记录长度6s 说明存储器可以记录6000个采样点.
网友评论
最新评论
2,4.7283,3.9602,否/11.444,1.5127,否/8.6776,1.6336,否 3,1.7251,1.6527,否/9.0995,1.2496,否/6.0967,1.2598,否 4,1.3407,1.2595,否/9.6348,1.0726,否/6.9007
/14.782,1.2500,否/10.369,1.2500,否 10,0.5375,1.7193,否/14.782,1.2500,否/10.369,1.2500
。发震时刻、震级、震中统称为“地震三要素”。D3C地震采集观测系统及主要参数根据试验结果分析和现有设备条件,最终确定的3D3C地震采集观测系统及主要参数如下:(1)观测系统观测系统类型:规则束状12线14炮制,端点激发接收道数:60×12=720道接收线数:12条接收道距:20m接