目录介绍:
- 1、课外数学小知识大全
- 2、趣味数学脑筋急转弯带答案_另类数学智力题
- 3、趣味数学小知识内容(数学趣味小知识简短的20到50字左右)
- 4、我需要一些趣味数学题带答案
- 5、求简短的数学趣味题 !50道、
课外数学小知识大全
1.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。 二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
2.谁给我20篇数学课外知识呀,字少点呀
数学知识 《几何原本》 几 何 原 本 《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。
自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。
除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的。
公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料。希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统。
首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充。到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础。
欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。
《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的。《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识。
第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。该卷的最后两个命题是毕达哥拉斯定理及其逆定理。
这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的。”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了。
第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学。 第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理。
这些定理大多都能在现在的中学数学课本中找到。第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题。
第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一。据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容。
他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来。此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐。
第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理。 第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷。
最后三卷,即第十一、十二和十三卷,论述立体几何。目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到。
《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系。所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题。
《几何原本》成为了两千多年来运用公理化方法的一个绝好典范。 诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值。
它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语。它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝。
哥德巴赫猜想 哥 德 巴 赫 猜 想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。
这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。
实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。
但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。
1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其。
3.课外数学小知识
一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。
第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
它是数论中的一个著名问题,常被称为数学皇冠上的明珠。二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。
国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。
陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。
但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。
根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。
三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。
4.关于数学的小知识
数学小知识
--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到 *** 论中去了。
到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
5.数学趣味小知识 简短的 20到50字左右
趣味数学小知识 数论部分: 1、没有最大的质数。
欧几里得给出了优美而简单的证明。 2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。 3、费马大定理:x的n次方+y的n次方=z的n次方,n2时没有整数解。
欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。 拓扑学部分: 1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。 3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操, 摘自:/bbs2/ThreadDetailx?id=31900。
6.小学数学5个小知识
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 )表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 )周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,。
7.数学趣味小知识 简短的 20到50字左右
趣味数学小知识数论部分:1、没有最大的质数。
欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n2时没有整数解。
欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。
趣味数学脑筋急转弯带答案_另类数学智力题
脑筋急转弯中的问题通常要求在语言形式上采用各种语义策略,突破人们的惯性思维。本文旨在从语音歧义、词汇歧义、结构歧义对脑筋急转弯进行分析,从而使人们对脑筋急转弯有更多的了解,同时也有助于脑筋急转弯的进一步扩展。以下是我为大家准备的趣味数学脑筋急转弯带答案,希望大家喜欢!
趣味数学脑筋急转弯带答案 【经典篇】
1. 3个人3天用3桶水,9个人9天用几桶水?答案:9捅
2. 三个孩子吃三个饼要用3分钟,九十个孩子九十个饼要用多少时间?答案:三分钟
3. 猴子每分钟能掰一个玉米,在果园里,一只猴子5分钟能掰几个玉米?答案:一个也没有掰到
4. 一个苹果减去一个苹果,猜一个字。答案:0
5. 从一写到一万,你会用多少时间?答案:最多5秒,10000
6. 怎样使用最简单的 方法 使X+I=IX等式成立?答案:1+X
7. 买一双高级女皮鞋要214元5角6分钱,请问买一只要多少钱?答案:一只不卖
8. 有三个小朋友在猜拳,,一个出剪刀,一个出石头,一个出布,请问三个人共有几根指头答案:六十
9. 浪费掉人的一生的三分之一时间的会是什么东西?答案:床
10. 一把11厘米长的尺子,可否只刻3个整数刻度,即可用于量出1到11厘米之间的任何整数厘米长的物品长度?如果可以,问应刻哪几个刻度?答案:可以刻度可位于2,7,8处.
11. 考试做判断题,小花掷骰子决定答案,但题目有20题,为什么他却扔了40次?答案:他要验证一遍
12. 一个挂钟敲六下要30秒,敲12下要几秒?答案:66秒
13. 什么时候4-3=5?答案:算错时
14. 王大婶有三个儿子,这三个儿子又各有一个姐姐和妹妹,请问王大婶共有几个孩子?答案:五个
趣味数学脑筋急转弯带答案 【经典篇】
1. 8个数字“8”,如何使它等于1000?答案:8+8+8+88+888
2. 小强数学只差6分就及格,小明数学也只差6分就及格了,但小明和小强的分数不一样,为什么?答案:一个是54分,一个是0分
3. 一口井7米深,有只蜗牛从井底往上爬,白天爬3米,晚上往下坠2米。问蜗牛几天能从井里爬出来?答案:5天
4. 某人花19快钱买了个玩具,20快钱卖出去。他觉得不划算,又花21快钱买进,22快钱卖出去。请问它赚了多少钱?答案:2元
5. 100个包子,100个人吃,1个大人吃3个,3个小孩吃1个,多少个大人和多少小孩刚好能吃完?答案:25个大人,75个小孩
6. 小王去网吧开会员卡,开卡要20元,小王没找到零钱,就给了网管一张50的,网管找回30元给小王后,小王找到20元零的,给网管20元后,网管把先前的50元还给了他,请问谁亏了?答案:网管亏了30元
7. 每隔1分钟放1炮,10分钟共放多少炮?答案:11炮
8. 一个数去掉首位是13,去掉末位是40.请问这个数是几?答案:四十三
9. 1根2米长的绳子将1只小狗拴在树干上,小狗虽贪婪地看着地上离它2.1米远的l根骨头,却够不着,请问,小狗该用什么方法来抓骨头呢?答案:转过身用后腿抓
10. 烟鬼甲每天抽50支烟,烟鬼乙每天抽10支烟。5年后,烟鬼乙抽的烟比烟鬼甲抽的还多,为什么?答案:烟鬼甲抽得太多了早死了
11. 一个数若去掉前面的第一个数字是11,去掉最后一个数字为50,原数是多少?答案:五十一
12. 有一种细菌,经过1分钟,分裂成2个,再过1分钟,又发生分裂,变成4个。这样,把一个细菌放在瓶子里到充满为止,用了1个小时。如果一开始时,将2个这种细菌放入瓶子里,那么,到充满瓶子需要多长时间?答案:59分钟
13. 往一个篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加1倍,这样,12分钟后,篮子满了。那么,请问在什么时候是半篮子鸡蛋?答案:11分钟
14. 有二个空房间,一间房间有三盏灯,另一个房间有三个开关,每一个开关只能打开一盏灯,如果你只可以进每个房间一次,那你要如何知道那个开关控制哪盏灯?答案:将一个开关打开五分钟,再开另一个开关,到另一房间
趣味数学脑筋急转弯带答案 【精简篇】
1. 有100个捧球队比赛,选冠军,最少要赛多少场?答案:要赛99场
2. 用三个3组成一个最大的数?答案:3的33次方。
3. 小明带100元去买一件75元的衬衫,但老板却只找了5块钱给他,为什么?答案:小明就只给了老板80元钱
4. 刚上幼儿园第一天的Rose,从来没学过数学,但老师却称赞她的数学程度是数一数二的,为什么?答案:他只会数一数二的。
5. 长4米,宽3米,深2米的池塘,有多少立方米泥?答案:池塘是空的,没有泥。
6. 小明拿了一百元去买一个七十五元的东西,但老板却只找了五元给他,为什么?答案:他只给了80元。
7. 你能否用3跟筷子搭起一个比3大比4小的数?答案:搭成圆周率“∏”
8. 小明带100元去买一件75元的东西,但老板却只找了5块钱给他,为什么?答案:他给老板80元
9. 把24个人按5人排列,排城6行,该怎样排?答案:排成六边形
10. 一字四十八个头,内中有水不外流。猜一字。答案:井。此迷的关键理解出四个十和八个头,而不是四十八个
11. 有三个空房间,一间房间有三盏灯,另一个房间有三个开关,每一个开关只能打开一盏灯,如果你只可以进每个房间一次,那你要如何知道那个开关控制哪盏灯?答案:进有开关的房间,打开其中一个开关,过5分钟后关掉,
12. 两个棋友一天共下了9盘棋,在没有和局的情况下他俩赢的次数相同,怎么回事答案:9盘不全是他们两个人一起下的
13. 一堆西瓜,一半的一半比一半的一半的一半少半个,请问这堆西瓜有多少个?答案:2个
14. 请问:将18平均分成两份,却不得9,还会得几 答案:10(从中间分)
趣味数学脑筋急转弯带答案【热门篇】
(1)树上10只鸟,打死3只,树上还有多少只鸟?
(2)屋子里有10盏灯,灭了3盏灯,屋子里还有多少盏灯?
(3)屋子里点着10只蜡烛,中途灭了3只,屋子里还有多少只蜡烛?
(4)正方形桌子被砍去一角,还剩几个角?
(5)一个钓鱼人钓到了六条无头鱼,八条半截鱼,九条无尾鱼。他到底钓到了几条鱼?
(6)一个数,去掉首位是13,去掉末尾是40,这个数是多少?
(7)一减一不等于零,等于多少?
(8)如何做最少的改变,使 6×6=18 成立。
(9)如果 1=5
2=25
3=125
4=625
那么 5=?
(10)根据数字规律,在下面的空格里填上适当的数。
3、1、4、1、5、□ 、2、6、□
(11)如果 数一数二=12,
那么 七上八下=?
九九归一=?
(12)如果 2+3=0
3+4=5
4+1=7
那么 2+4=?
有一些表面上与数学有关的趣味题,属于脑筋急转弯之类,其实与数学根本无关。它们通过一些文字技巧、歧义表述,误导解题者的正常思维。这些题的答案要么供人哈哈一乐,要么可能有无数。这些题更没有标准答案,只能自圆其说。正如 春节 联欢晚会上赵本山忽悠范伟那样的题目:一加一在什么情况下等于三?答案是在算错的情况下。难怪范围很委屈地说:算错还等于四呢。
因此,我不主张低年级学生看什么数学脑筋急转弯之类的东西,来开发小孩智力,即使它们对训练发散思有好处。
因为这类脑筋急转弯并不涉及到数学运算或者逻辑推理,严格来讲不是趣味数学题。如果非要把这类脑筋急转弯归入趣味数学之中,只能是另类趣味数学题。
以上这些另类趣味数学题,有的已广为流传,不知道原出题者是谁;有几道是作者新编。大家随便想一想,聊作大脑休闲吧。
有17头牛,弟兄3个分,老大分一半.老二分1/9,老三1/3,问他们弟兄三个每人能分几头?(整头牛不能分开)
解题1、很有趣的是,我们可以找邻居借一头牛,成为18头牛.
老大分得18的一半,9头牛.老二分得18的1/9,2头牛.老三分得18的1/3,6头牛.一共9+2+6 = 17头.再把找邻居借的一头牛还回去,即可.
哈哈,这个是比较风趣的答题方法了,不过我们还是要正规答题的,要知道这个 智力题 是要考察我们什么知识的,下面是正规的方法:
这个考察最小公倍数的题,,1/2,1/9,1/3的最小公倍数是 18;
那么,18×1/2= 9;
18×1/9=2;
18×1/3=6;
所以三兄弟每人分的牛是:9头,2头,6头
猜你喜欢:
1. 经典 搞笑脑筋急转弯
2. 趣味脑筋急转弯
3. 有趣味的脑筋急转弯
4. 最新 脑筋急转弯大全及答案
5. 搞笑趣味脑筋急转弯
6. 整人趣味脑筋急转弯
趣味数学小知识内容(数学趣味小知识简短的20到50字左右)
1.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
2.生活中的趣味数学知识
1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?
3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?
1
设x名工人生产上衣,得
4x=7*(66-x)
则x=42
所以一天可以生产 4*42=168 套服装
2
设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)*8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5*2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,。
此时N=32w+8
3
设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩
3.趣味数学主要讲的内容什么
《小学高年级趣味数学》内容简介:数学是小学最重要的课程之一。小朋友们每天都和数学打交道,你们发现了它的魅力了吗?有些小朋友会说:“数学有什么魅力呢?数学就是十个数字和几个运算符号而已,太枯燥了。”有些小朋友会说:“数学好难学啊!”但是,也一定会有小朋友会说:“数学太有趣了!我多么喜欢数学啊!”
其实,数学是所有学科中最有趣、最有魅力的课程之一。一位美学家曾说过:“美,只要人感受到它,它就存在,不被人感受到,它就不存在。”数学的魅力也是这样,发现了它的魅力之所在的小朋友就会非常喜欢它,而没有发现这种魅力的小朋友就会觉得数学又枯燥又难学。
三部分:1、某数学家的奇闻趣事。2、趣味数学题,计划3-5道。3、学好数学的方法
4.数学趣味小知识 简短的 20到50字左右
趣味数学小知识数论部分:1、没有最大的质数。
欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。
陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n2时没有整数解。
欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。
5.关于小学生趣味数学的内容
数学趣闻
有人梦见自己在和上帝对话。“伟大的 *** ,在你眼里,1000年意味着什么?”上帝回答说:“只不过一分钟罢了。”那人又说:“大慈大悲的 *** ,请告诉我,10万金币意味着什么?”“一个铜板罢了”。“至高无上的 *** ,请您恩赐我一个铜板吧”!上帝说:“也好,那就请等一分钟吧!”这意味着这位“贪财”之人得等上足足1000年。
在中国传统民间资料也有类似的寓言。一位聪明的媒婆正在称赞某位姑娘的人、德、品俱佳,心直口快的小伙子说:“那位姑娘我见过,好象有一只眼睛是瞎的?”媒婆忙说:“那好哇,别的男人就不会和她挤眉弄眼!”“听说她是个哑吧?”“挺好的呀,她不会叽叽喳喳,多嘴多舌。”“有人说她好像有一只手不听使唤!”“是个很大的优点,她不会偷鸡摸狗。”“据说她有只脚不大会走路?”“她更加老实本份,不会惹是生非!”“她很矮!”“可省衣料!”……
一位数学家兼电脑学家读了这则寓言后,竟想出一则有趣的题目,这位数学家来自德黑兰,就是20世纪60年代,创造模糊数学的大师洛德菲札德。我们知道0,1,2,3,4,5……9,10个数构成不重不漏的基本单位。这位数学家,想到10位数字可以由5位数的平方算出。也就是把12,3,4,……分成两组,构成2个5位数,使两个5位数的平方的和结果是由0,1,2,3,……9这10个数字构成,不重不漏的10位数。如果单凭人力,想把“十全十美”的数搜查出来,无异于大海捞针,好在我们有了电脑,经过一番努力,有人利用电脑达到了目的,看下面:
57321*57321=3285697041
60984*60984=3719048256
可见数学思维不仅体现在数学领域,还渗透在文学故事中。
我需要一些趣味数学题带答案
1.有 3 个人去投宿,一晚 30 元.三个人每人掏了 10 元凑够 30 元交给了老板. 后来老板说今天优惠只要 25 元就够了,拿出 5 元命令服务生退还给他们, 服务生偷偷藏起了 2 元,然后,把剩下的 3 元钱分给了那三个人,每人分到 1 元. 这样,一开始每人掏了 10 元,现在又退回 1 元,也就是 10-1=9, 每人只花了 9 元钱,3 个人每人 9 元, 3 X 9 = 27 元 + 服务生藏起的 2 元=29 元,还有一元钱去了哪里??? 此题在新西兰面试的时候曾引起巨大反响.有谁知道答案呢?
答案:每人所花费的 9 元钱已经包括了服务生藏起来的 2 元(即优惠价 25 元+服务生私藏 2 元=27 元=3*9 元)因此,在计算这 30 元的组成时不能算上服务生私藏的那 2 元钱,而应该 加上退还给每人的 1 元钱。即:3*9+3*1=30 元正好!还可以换个角度想..那三个人一共出了 30 元,花了 25 元,服务生藏起来了 2 元,所以每人花了九元,加上分得的 1 元,刚好是 30 元。因此这一元钱就找到了。 小结:这道题迷惑人主要是它把那 2 元钱从 27 元钱当中分离了出来,原题的算法错误的认为 服务员私自留下的 2 元不包含在 27 元当中,所以也就有了少 1 元钱的错误结果; 而实际上私 自留下的 2 元钱就包含在这 27 元当中,再加上退回的 3 元钱,结果正好是 30 元。
2.有个人去买葱 问葱多少钱一斤 卖葱的人说 1 块钱 1 斤 这是 100 斤 要完 100 元 买葱的人又问 葱白跟葱绿分开卖不 卖葱的人说 卖 葱白 7 毛 葱绿 3 毛 买葱的人都买下了 称了称葱白 50 斤 葱绿 50 斤 最后一算葱白 50*7 等于 35 元 葱绿 50*3 等于 15 元 35+15 等于 50 元 买葱的人给了卖葱的人 50 元就走了 而卖葱的人却纳闷了 为什么明明要卖 100 元的葱 而那个买葱的人为什么 50 元就买走了呢? 你说这是为什么?
答案:1 块钱一斤是指不管是葱白还是葱绿都是一块钱一斤, 当他把葱白和葱绿分开买时, 葱 白 7 毛 葱绿 3 毛,实际上其重量是没有变化,但是单价都发生了变化,葱白少收了 3 毛每 斤,葱绿少收了 7 毛每斤,所以最终 50 元就买走了。
3..有口井 7 米深 有个蜗牛从井底往上爬 白天爬 3 米 晚上往下坠 2 米 问蜗牛几天能从井里爬出来? 答案:5 天。 这道题很多人想都不想就说是七天..其实用一个很简单的方法.. 你拿张纸画一下就出来了..这道题特简单...
4..一毛钱一个桃 三个桃胡换一个桃 你拿 1 块钱能吃几个桃? 答案:1 块钱买 10 个,吃完后剩 10 个核。再换 3 个桃,吃完后剩 4 个核。 再换 1 个桃,吃完后剩 2 个核。朝卖桃的赊 1 个,吃完后剩 3 个核。把核都给卖桃的,顶赊 的那个。 所以,你一共吃了 10+3+1+1=15 个桃。 这是大家都知道的方法..还有个方法.. 不要一次买十个..分开买.. 第一次三个..第二次两个..第三次两个..这样....很简单..也是 15 个。
5.有十二个乒乓球形状、大小相同,其中只有一个重量与其它十一个不同,现在要求用一部 没有砝码的天秤称三次, 将那个重量异常的球找出来, 并且知道它比其它十一个球较重还是 较轻。 答案:分成 A B C 3 组,每组 4 颗, 第一次称可能有 3 种结果.. AB 或 A=B 或 AB 如果 A 大于 B 直接称 A 的 4 颗球一边 2 颗,这样就知道哪边重,哪边重称哪边就知道哪个 是最重的球了! 如果 A 等于 B 直接称 C 的 4 颗球,方法同上 如果 A 小于 B 直接称 B 的 4 颗球,方法同上 。
6.一个商人骑一头驴要穿越 1000 公里长的沙漠, 去卖 3000 根胡萝卜。 已知驴一次性可驮 1000 根胡萝卜,但每走 1 公里又要吃掉 1 根胡萝卜。问:商人最多可卖出多少胡萝卜? 答案:534 根。 首先驼 1000 根萝卜前进 x1 公里放下 1000-2*x1 根后带走剩下的 x1 根返回; 然后驼 1000 根萝卜前进,至 x1 公里处取 x1 根萝卜,让驴子恰好驼 1000 根萝卜; 继续前进至距起点 x2 公里处,放下 1000-2*(x2-x1)根萝卜再返回, 到 x1 公里处恰好把萝卜吃完,再取 x1 根萝卜返回起点; 最后驼走一千根萝卜,行至 x1、x2 处依次取走所有萝卜,再行至终点。 x1、x2 处剩余的萝卜分别小于等于 x1 和(x2-x1) ,在这个不等式约束条件下,求得两处剩 余萝卜的最大值即可,因为实际上两处剩余的萝卜个数就是最终能够到达终点的萝卜个数。 最后求的 x1=200,x2=1600/3。 驴走过的总路程是 2*x1+2*x2+1000=2466+2/3,按题意是走完一公里才吃一根萝卜, 也就是吃 掉的萝卜总数为里程数向下取整,为 2466,所以最终剩下能卖掉的萝卜是 3000-2466=534 根了。
7.话说某天一艘海盗船被天下砸下来的一头牛给击中了,5 个倒霉的家伙只好逃难到一个孤 岛,发现岛上孤零零的,幸好有有棵椰子树,还有一只猴子!大家把椰子全部采摘下来放在一起, 但是天已经很晚了,所以就睡觉先. 晚上某个家伙悄悄的起床,悄悄的将椰子分成 5 份,结果发现多一个椰子,顺手就给了幸运的猴 子,然后又悄悄的藏了一份,然后把剩下的椰子混在一起放回原处,最后还是悄悄滴回去睡觉 了. 过了会儿,另一个家伙也悄悄的起床,悄悄的将剩下的椰子分成 5 份,结果发现多一个椰子,顺 手就又给了幸运的猴子,然后又悄悄滴藏了一份,把剩下的椰子混在一起放回原处,最后还是 悄悄滴回去睡觉了. 又过了一会 ...... 又过了一会 ... 总之 5 个家伙都起床过,都做了一样的事情。 早上大家都起床,各自心怀鬼胎的分椰子了,这个 猴子还真不是一般的幸运,因为这次把椰子分成 5 分后居然还是多一个椰子,只好又给它了. 问题来了,这堆椰子最少有多少个?
答案:这堆椰子最少有 15621 第一个人给了猴子 1 个,藏了 3124 个,还剩 12496 个; 第二个人给了猴子 1 个,藏了 2499 个,还剩 9996 个; 第三个人给了猴子 1 个,藏了 1999 个,还剩 7996 个; 第四个人给了猴子 1 个,藏了 1599 个,还剩 6396 个; 第五个人给了猴子 1 个,藏了 1279 个,还剩 5116 个; 最后大家一起分成 5 份,每份 1023 个,多 1 个,给了猴子。
8.某个岛上有座宝藏,你看到大中小三个岛民,你知道大岛民知道宝藏在山上还是山下,但 他有时说真话有时说假话, 只有中岛民知道大岛民是在说真话还是说假话, 但中岛民自己在 前个人说真话的时候才说真话, 前个人说假话的时候就说假话, 这两个岛民用举左或右手的 方式表示是否,但你不知道哪只手表示是,哪只手表示否,只有小岛民知道中岛民说的是真 还是假,他用语言表达是否,他也知道左右手表达的意思。但他永远说真话或永远说假话, 你也不知道他是这两种类型的哪一种, 你能否用最少的问题问出宝藏在山上还是山下? (提 示:如果你问小岛民宝藏在哪,他会反问你怎么才能知道宝藏在哪?等于白问一句) 答案:为了方便,我们把大中小岛民分别记为 ABC(其实都没用到 C) 第一个问题问 A:宝藏在山上吗? 第二个问题问 B:A 答对了吗? 第三个问题问 B:1+1=2 对吗? 好,现在第一问我们不知道 A 回答的是“是”还是“否” ,也不知道 A 回答的真还是假,只 是知道 A 举的手是左手还是右手,那先不管他。 看第二问,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是对的,B 在第二问的时 候也答对,所以他应该回答“是”(如果他会汉语的话). 还是一样的,不管 A 回答的意思是“是”还是“否”,只要 A 的回答是错的,B 在第二问的 时候也答错,所以他还是应该回答“是” 。 所以无论何种情况 B 举的那只手都是“是”的意思; 第三问: 现在知道左右手是什么意思了,那只要知道 B 刚才的回答是真还是假, 就能确定 A 是真还是假了,因为他们两个的真假必定是一样的。所以随便找个题目来问就可以了,比如 1+1=2 是吗? 还有个方法: 首先随便问一个人:你是不是说真话 那个人一定会举起代表 是 的那只手 因为如果他说的是真话,他会举起 代表 是 的手 他说的是假话 他也会举起 代表 是 的手 所以可以由此得出、那只手代表 是 然后问中岛民:大岛民说 宝藏是在山上吗? 中岛民回答的一定是正确答案 也就是说,中岛民说在哪宝藏就在哪
因为如果中岛民说 是 若大岛民说的是真话、那么中岛民说的也是真话、那么宝藏就一定在山上 若大岛民说的是假话,那么中岛民说的也是假话,那么其实大岛民是说,宝藏在山下的,但 是因为这是假的,所以宝藏还是在山上的。
9.说一个屋里有多个桌子,有多个人? 如果 3 个人一桌,多 2 个人。 如果 5 个人一桌,多 4 个人。 如果 7 个人一桌,多 6 个人。 如果 9 个人一桌,多 8 个人。 如果 11 个人一桌,正好。 请问这屋里多少人 答案:2519 个人。只要是 315×(11X+8)-1 都可以 因为 9 是 3 的 3 倍所以 3 不算 根据题目可以得出规律 是 5、 7 、9 的倍数少一 于是将 5×7×9=315 然后算出 315 的倍数除以 11 的周期 得出周期为:7 3 10 6 2 9 5 1 8 4 0 共 11 个,因为是除以 11 的嘛,有简便算法不用一个个试 的 因为 315-1 要被 11 整除..所以取周期余 1 的。
10.有人想买几套餐具,到餐具店看了后,发现自己带的钱可以买 21 把叉子和 21 把勺子, 或者 28 把小刀。如果他买的叉子,勺子,小刀数量不统一,就无法配成套,所以他必须买 同样多的叉子,勺子,小刀,并且正好将身上的钱用完。如果你是这个人,你该怎么办? 答案:可以买 12 副餐具。 一把勺子和叉子的钱是 1/21 一把小刀的钱是 1/28.. 一套的总价是 1/21+1/28=1/12..
所以可以买 12 套..所有钱都用完了。
11.一个小偷被警查发现 警查就追小偷,小偷就跑 跑着着跑着,前面出现条河 这河宽 12 米,河在小偷和警查这面有颗树 树高 12 米,树上叶子都光了 小偷围着个围脖长 6 米 问小偷如何过河跑? 答案:把围脖系在树顶上,小偷就吊着围脖荡秋千, 围脖和树干成 45 度角的时候就放手,就会把小偷甩过河了。 另外还参考了一下别人的答案 有人说根据题目可以得出当时是冬天.. 所以..水面结冰..跑了过去...
求简短的数学趣味题 !50道、
求简短的数学趣味题 !50道、
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案:
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案:
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案:
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21 的立方是9261,是四位数;22的立方是10648;所以10=x=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=x=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、 6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21 的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。所以,维纳的年龄应是18。
有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?
25根。
先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。
把一张纸裹在一支粉笔上,再用刀斜着把粉笔切断,请问把纸展开后断边为什么形状?
答案:正弦曲线
大雪后的一天,婷婷和爸爸从同一点出发沿同一方向分别步测一个圆形花园的周长。婷婷毎步长54厘米,爸爸毎步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。问:这个花园的周长是多少米?
理由,列式
假设法
求54和72的最小公倍数216
即求216厘米 *** 有几个脚印
216/54+216/72-1 (因为刚开始两人脚印重合)
=4+3-1
=6
60/6=10
216*10=2160(cm)
五年级奥数
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
解:两个小组共有(15+18)-10=23(人),
都不参加的有40-23=17(人)
答:有17人两个小组都不参加。
--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。
6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。
---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。
-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。
--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点
答:在这个五角星上红色点最少有9960个。
--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
题中的除尽应该是整除吧.
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故 x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。 就这么多了啊欢迎追问啊!
简短的趣味语文
说具体点
求两则简短的数学故事,急用
今天是10月15日星期六,我和爸爸到南大街逛商场。
早上8点多钟,我们就乘车来到了南大街。正巧,站台边有一位老爷爷,他的身边有一台“会说话”的秤。
看到我走过来,老爷爷笑着说:“小朋友,称体重吗?
我有点好奇地问:“称一次要多少钱呀?”
老爷爷爽快的回答:“称一次只要1元,而且还可以量出身高呢!”
我想:这真是一举两得呀!
于是,我在秤上站稳。老爷爷把开关打开,只觉得有个软软的东西往我的头顶上一碰,随后,机器上打印出一张小长方形的纸条,上面写着:“体重:27.0公斤 身高132.5厘米”呀!这半年我长高了4厘米,可是体重呢?
这时,我记起数学课上老师说过,“千克”还有一个名字就叫“公斤”,没想到今天被我遇见了,而且我知道我的体重增加了2千克呢!
回来的路上,我好开心啊!我一定要把身体锻炼的棒棒的!
《比一比,谁用的单位多?》 湖塘桥中心小学三(2)班 曹可斐
早上,我从长大约2米的床上爬起来;
拿起一枝长大约6厘米的牙刷开始刷牙;
接着,拿起一块长40厘米,宽20厘米的毛巾开始洗脸。
洗漱结束后,我拿了一只重大约100克的碗盛满稀饭;
吃完后,我背着重大约2千克的书包来到学校,开始了40分钟的早读课;
两节课后,我们都站在高大约7米的国旗杆下做操。
好了,我就说这么多,你能比我说得更多更流利吗?
初一或初二的数学趣味问题,要答案,简短一点
随意写一串数字
例如1098547566
然后把这串数字倒一下变成
6657458901
用新数字串减去以前的数字串得出
6657458901-1098547566=5558911335
然后将得出的结果各个数字相加
5+5+5+8+9+1+1+3+3+5=45
然后再4+5=9 不管初始写的是什么 按照这样的过程 最终得出的结果必定是9
再举例 20080808奥运会 跌倒一下变成80808002
相减80808002-20080808=60727194
6+0+7+2+7+1+9+4=36
3+6=9
谁知道 世界的数学名题 要有答案的 简短的
有兴趣去找下费马大定理的证明,怀尔斯几年研究的成果.
或者去找找最新成果庞加莱猜想的证明,如果你能看懂我佩服你.
一道简单而又趣味的数学题
1000/((根号x)-1) 米
趣味的数学小短文
网友评论
最新评论
恩赐我一个铜板吧”!上帝说:“也好,那就请等一分钟吧!”这意味着这位“贪财”之人得等上足足1000年。 在中国传统民间资料也有类似的寓言。一位聪明的媒婆正在称赞
0 216*10=2160(cm) 五年级奥数 包含与排除 1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么