目录介绍:
- 1、地震信号处理
- 2、数学形态学方法的基本思想是什么,其适用于图像处理的哪些方面
- 3、简述数字信号处理在地震勘探中的应用
- 4、 数学形态学基本算法
- 5、地震属性分析技术在地震剖面解释中的应用
- 6、信号处理中的形态学物理意义?结构元素怎么创建?为什么提示说结构元素只能是0和1??
地震信号处理
野外地震记录包含着地下构造和岩性的信息,但这些信息是叠加在干扰背景上的,而且被一些外界因素所扭曲,信息之间往往是互相交织的。地震信号处理就是对野外地震记录进行一些运算,从中提取有关的地质信息,为地质解释提供可靠资料。地震信号处理开始于20世纪60年代中期,当时只是简单地改造野外资料,其主要内容包括数字滤波、反褶积、动校正及共中心点叠加。到了90年代,三维地震资料处理得到了进一步的发展。进入21世纪,随着计算机计算能力的提高,偏移技术获得很大地提高,叠前时间偏移,叠前深度偏移成为现实,大大提高了地震资料的成像精度。层析静校正技术也获得了进一步发展,提高了复杂地区的静校正精度。煤炭地震资料处理中的主要环节包括以下几种。
1.观测系统
地震道由道头和数据两部分组成,道头用来存放描述地震道特征的数据,如野外文件号、记录道号、CMP号、CMP点的坐标、偏移距、炮点和检波点的坐标和高程等。观测系统的定义就是赋予每个地震道正确的炮点坐标、检波点坐标,以及由此计算出的中心点坐标和面元序号,并将这些信息记录在地震道头上,以便于后续的处理。现在国际通用的是利用野外提供的SPS文件,处理软件直接把SPS文件加到地震数据的道头里面从而进行后续处理。
2.预处理
预处理是指地震数据处理前的准备工作,是地震数据处理中重要的基础工作,主要包括数据解编、道编辑。数据解编就是把野外的时序记录转化为处理中应用的道序记录。不同的处理软件都有相应的解编程序,把野外数据转化成自己内部的格式。在野外采集中由于各种因素的影响,可能存在大量的强振幅野值、不正常工作道、不正常工作的炮、极性反转的道等,这些对后续的处理会产生很大的影响,因此要把它们都编辑掉,这个过程就称为道编辑。道编辑是地震数据噪声压制的重要环节。
3.静校正
地震道的静校正时差与地震道的时间无关,它是一个常数。一个地震道对应一个炮点和一个检波点,因此某一地震道的静校正量应该是炮点校正量和检波点静校正量之和。炮点和检波点的静校正量是炮点和检波点空间位置的函数,可以分为低频分量和高频分量。高频分量的静校正量称为短波长静校正量;低频分量的静校正量成为长波长静校正量。短波长静校正量使得共中心点道集的同相轴能实现同相叠加,影响叠加效果;长波长静校正量对叠加效果的影响不是很明显,但容易产生构造假象,影响低幅构造的勘探。一般而言,地表一致性剩余静校正主要解决短波长静校正问题,而长波长静校正问题主要通过野外静校正和折射波静校正来解决,长波长静校正问题危害更大,解决更困难。
现在资料处理过程中常用的为折射波静校正。由于低速层的速度低于下覆地层的速度,因此地震记录上能够记录到来自高速层的折射波。一般情况下,折射波先于地下反射到达地表,通过拾取折射波的初至时间,从中提取低速层的速度和厚度等信息,利用这些信息所进行的静校正,通常称为折射波初至静校正。
近几年,层析反演静校正技术获得很大的发展。层析反演静校正就是通过拾取地震波的初至,用地震波走时速度层析成像的方法反演出近地表速度模型,然后根据模型计算静校正量的静校正技术。层析反演静校正的研究对象是与表层结构有着密切联系的初至波,这里的初至波是广义的,包括直达波、回折波、折射波,以及几种波组合后首先到达地表的波。由于直达波主要体现了均匀介质模型,回折波主要体现连续介质模型,而折射波主要体现层状介质模型,因此初至波在近地表地层的传播过程中包含了丰富的信息。通过三者的组合以及层析法对横向变化的适应性,使得该方法能够适应任意表层模型的反问题。
4.反褶积
在反射波法地震勘探中,由震源产生的尖脉冲经过大地滤波作用后会变成具有一定延续时间的地震子波,降低了地震资料的分辨率,在地震资料处理中要把地震子波压缩为一个反映反射系数的窄脉冲,这个过程叫反褶积。通过反褶积可以有效拓宽地震信号的频带,提高地震记录的分辨率。
5.速度分析
地震波在地下岩层介质中的传播速度是地震资料处理和解释中非常重要的参数。通过速度分析,可以得到准确的速度参数,提高动校正、水平叠加、偏移成像的精度。在地震资料处理过程中,要比较精确地求得速度,首先要进行速度扫描,求得初始速度;其次利用求得的速度作为初始的迭代速度,通过速度谱分析,求得较准确的速度;最后利用求得的速度作剩余静校正,用速度谱,进行速度分析,多次迭代,求得准确的叠加速度。
当地震数据的偏移距较小,反射波的埋藏深度较大时,常规的速度分析可以保证动校正的精度,但当偏移距大到一定程度时,就会产生不可忽略的误差,表现为动校正过量,或中间下弯。在这种情况下,近年来发展了一种高阶速度分析技术,就是把动校正的公式由常规的二阶提高到四阶,可以很好地解决大偏移距的弯曲和畸变问题,提高了速度分析的精度。
6.叠加
叠加就是将不同接收点接收到的地下同一反射点的不同激发点的地震道,经动校正叠加起来。这种方法能提高信噪比,改善地震记录的质量。主要方法有水平叠加、保持振幅叠加、DMO叠加。水平叠加是建立在水平层状介质模型之上的,当地层具有倾角时,CMP道集数据不对应地下界面同一反射点上的信息,动校正叠加后也不能形成真正的零炮检距记录;另一方面,当一个地震记录上同时接收到倾角不同的两个界面的反射信息时,由于动校正速度与倾角有关,而我们又只能选择一个速度,因此某个倾角的反射信息必然受到压制。为了克服水平叠加存在的问题,改善水平叠加的效果,发展了倾角时差校正(DMO)技术。DMO技术是把动校正之后的数据,先偏移到零炮检距位置上,然后叠加。现在我们在资料处理中常用的为DMO叠加。
7.偏移
地震偏移是一个反演过程,它将地震反射波和绕射波归位到产生它(们)的地下真实位置上,并恢复其波形和振幅特征。在20世纪80年代初以前,地震偏移成像基本上是在叠后完成的。当地下构造复杂、横向速度变化剧烈时,叠后偏移已不能使地下构造正确成像,即使采用倾角时差校正(DMO,也称叠前部分时间偏移)也难以得到真正零炮检距剖面。而叠前偏移不受水平层状介质、自激自收的零炮检距剖面等假设限制,比叠后偏移技术更适应实际资料的复杂情况,所以只有叠前偏移技术才能更好地适应复杂构造成像。
叠前偏移处理技术利用叠前道集,使用均方根速度场将各个地震数据道偏移到真实的反射点位置,形成共反射点道集并进行叠加,提高了偏移成像精度。叠前时间偏移方法自身迭代过程也使最终得到的速度场精度比叠后时间偏移方法高,从而有利于提高构造解释成图精度。
数学形态学方法的基本思想是什么,其适用于图像处理的哪些方面
基本思想:利用具有一定形态的结构元素作为探针来探测目标图像,当探针在图像中不断移动时,便可考虑图像的形状和各个部分之间的关系,从而获得有关图像的形态结构特征的信息,进而达到对图像进行分析和识别的目的。其适用于与图像处理有关的各个方面,如目标识别、图像分割、骨架抽取及图像编码压缩、图像重建、颗粒分析等。
简述数字信号处理在地震勘探中的应用
地震勘探本身接收的就是从震源激发,经过地下介质传播,最后到达检波器的数字信号,要想获得地下的具体地质情况,数字信号处理就显得尤为重要。通过一系列的处理算法,达到提高信噪比,改善分辨率,识别地下地层信息的目的。
数学形态学基本算法
数学形态学(mathematical morphology)是数字图像处理领域中的一门新兴学科,它是研究数字图像影像结构特征与快速并行处理方法的理论。数学形态学是建立在集合论的基础上,并溶入了积分几何理论。其主要思想是通过使用一种称为结构元素的已知结构小影像特征集合与影像目标相比较来完成各种复杂的运算——形态变换。数学形态学可用来进行二值图像、灰度图像及彩色图像的分析。但基于大多数矿图的现状,我们重点研究了二值图像的形态变换。
设X、Y为待处理的二值图像,B是所使用的结构元素,通常B是由3×3窗口所定义(最小结构元素),则可定义如下基本形态变换:
(1)膨胀(Dilation)
工矿区环境动态监测与分析研究
它是结构元素B在图像X所有目标元素位置上平移后点的轨迹。
(2)腐蚀(Erosion)
工矿区环境动态监测与分析研究
它是把结构元素B平移后放于图像X的某个位置上,当B上各点都与X上相应点重合时,B的原点位置的轨迹。
(3)断开(Opening)
工矿区环境动态监测与分析研究
它是对图像X先腐蚀后膨胀,其结果是X中能恰好完全包含B的部分,从而去掉图像上的微小连接、毛刺和凸出部分。
(4)闭合(Closing)
工矿区环境动态监测与分析研究
与断开运算相反,闭合运算能去掉图像X中的小孔和凹部并连接断线。
(5)击中或失落(Hit or Miss)
工矿区环境动态监测与分析研究
其中B1∪B2=B且B1∩B2=∅(空集)。当
时,为失落,否则为击中。击中运算相当于一种条件严格的模板匹配,它不仅指出了被匹配点应满足的性质即模板的形状,同时也指出这些点不应满足的性质,即对背景的要求。
由以上基本形态变换可以构成形态薄化和厚化。
(6)薄化(Thinning)
工矿区环境动态监测与分析研究
(7)厚化(Thickening)
工矿区环境动态监测与分析研究
以上各式中涉及到一些图像集合运算,其含义分别为:XUY为图像集合并;X∩Y为图像集合交;Xc为图像X的补集(对于二值图像而言,可视为其色调反转图像);X/Y=X∩Yc。
由以上基本形态变换及集合运算一起可以构成各种复杂的形态变换运算,如条件形态变换、序贯形态变换、条件序贯形态变换以及动态条件序贯形态变换等。基于这些形态变换,构成了矿图扫描图像处理的理论体系。
地震属性分析技术在地震剖面解释中的应用
聂 鑫
(广州海洋地质调查局 广州 510760)
作者简介:聂鑫(1986—),女,助理工程师,主要从事地震地质解释方向的研究。邮箱:miracle8618@yahoo.com.cn
摘要 地震属性从各个侧重角度充分提取地震信息,在用于划分地震相、改进地震资料品质、进行断裂检测效果明显,识别上超、顶超、削截等地层终止方式有着较大的优越性。通过地震属性分析技术在中国东部某油田地震资料上的实际应用,表明图形均衡属性明显提高了地震的分辨率;余弦相位属性在识别层序界面、不连续信息的获取上优越于原始地震数据;利用多属性组合进行断裂分析,在地震剖面上难以发现的小断层和微断裂都可以被突显出来。
关键词 地震属性 地震剖面 地质解释
1 地震属性概念及历史
地震属性是指叠前或叠后的地震数据,经过数学推导变换出的关于地震波几何形态、运动学特征、动力学特征以及统计学特征的特殊值。它们是地下地质构造、岩性、物性、含油气性以及其他相关性质的表征。
地震属性分析技术就是以地震属性为载体从地震数据中提取隐藏的信息,并将这些信息转化成与岩性、物性或油藏参数相关、可以为地震地质解释提供直接信息的一项技术。它从地震数据中提取的信息极大地引导了解释人员对地质现象的正确认识,从而增加了地震方法的应用价值[1-6]。
回顾地震属性发展历史,不难看出人们在不断地认识地震属性、挖掘地震属性、利用地震属性。地震发展初期,人们只是利用时间信息进行目标层位的确定与构造图件的绘制,随着地震技术的日益快速发展,人们发展了地震属性并且越来越多地利用属性进行辅助性地震解释。从20世纪60年代,人们就尝试利用楔状模型的振幅响应进行薄层调协厚度解释。到了70年代,出现了 “亮点” 技术,开始利用地震属性进行油气的检测。80年代初,Ostrander发现含水砂岩反射振幅随偏移距增加而减少,而含气砂岩反射振幅会随偏移距增加而增加。这一现象使人们开始关注和利用叠前地震属性,这也同时将反射系数随入射角变化应用于含气砂岩的识别。随着地震地层学的发展和应用,人们使用最多的是三瞬属性。进入90年代,随着三维地震的广泛应用和计算机技术的发展,对地震属性的应用进入了普及和快速发展阶段。另外,出现了具有明确地质含义的三维地震属性,如入倾角、方位角等,打消了地震属性使用者的顾虑,推动了地震属性的广泛应用。此外,相干体技术在断层解释与地质异常体检测中的成功应用,使三维属性体技术再次引起了人们的普遍关注。总之,随着具有明显地质意义的属性的不断应用,地震属性分析方法的不断提出,地震属性分析逐渐由线性向非线性发展,由定性向半定量、定量发展。各种属性分析方法如通过聚类、神经网络或协方差进行多元属性分析已经广泛应用于储层特征分析和地质建模[7-23]。
2 地震属性及其地质含义
据统计,现已有的地震属性达数百种,但实际地震解释上常用的只有几种。目前研究人员尚无法找到全部地震属性与岩石地质特征间的一一对应关系。但是,大量油气勘探实践和经验的统计结果表明:油气储层性质与地震属性之间确实存在某种统计相关性(表1)[24-27]。
表1 地震属性可能反映的储层性质[1]
3 地震属性在地震解释中的应用实例
各类地震解释软件都已开发了属性选择的软件包,解释人员可在地震波的运动学和动力学的基础上,来选择所需要的属性。本文使用Petrel软件进行地震属性的提取,Petrel软件中的属性包继承了地震解释软件Geoframe属性包的大部分内容,在它的基础上还有所扩充,加入了许多新技术和新方法。
3.1 运用地震属性提高地震数据质量
地震信号处理类属性通过对地震信号的基本处理,进行信号改造,包括对地震信号振幅增益、图形均衡、相移、地震数据求导等,突出需要的成分,提高分辨率,使之有利于层位解释与构造信息的分析。
通过属性的计算,得到了通过信号处理后的地震数据体。现以图形均衡属性(Graph-ic equalizer)为例,比较分析信号类属性在提高分辨率、刻画构造信息、提高信号质量的作用。图形均衡属性是通过应用或高或低或带通滤波,采用10个阶位作为频率控制点,提高或压制某些频率的信号,是改进和减小选择频率成分的有效的工具。
现以中国东部某油田地震数据为例进行说明。所选测线位置如图1中AA’位置所示,本文所用的剖面分别是测线AA’中选取的典型特征段。
图1 选区范围及测线位置
该油田地震工区主频为20 Hz,通过图形均衡属性,将30~50 Hz部分频率提高,地震信息中将高频的成分突出,分辨率得到提高,图2为提高前和提高后同相轴的变化,及断裂信息的凸显。图2(左)为原始地震数据,图2(右)为通过图形均衡后将频率为30~50 Hz的信息突出后的数据。
图2 原始地震剖面(左)与图形均衡后剖面(右)对比
从图2可以看出,通过信号滤波,提高了30~50 Hz的频率信息后,同相轴分辨率明显提高,同相轴连续性增强,高频信息的增加同时也突出了断裂信息,使原来不明显的断层突显出来,有利于小断层的展布特征分析和构造特征的研究,图形均衡是地震属性优化的一种重要方法。
信号分析类属性还包括初始振幅、振幅增益、相移、地震数据一阶导数、二阶导数、时间增益、自动增益等。这些都可对地震数据做某些方面的改善,对地震数据优化,为解释人员提供更理想的地震数据。
图3 地震反射终止类型及层序界面处反射特征示意图(据VanWagoner等,1990)
3.2 运用地震属性进行地层特征分析
在地震剖面上,层序界面常常表现为不协调的反射终止类型(图3),界面之上常见上超、下超反射,之下常见削截、顶超反射。其中,削截和顶超是层序界面识别的首要标志。顶超代表无沉积作用面,表现为以很小的角度逐步向层序顶面收敛;削截意味着地层沉积期后、经受了强烈的构造隆升或海平面下降而出露地表、遭受长期侵蚀作用。两者都反映上、下两套层序之间存在沉积间断。此外,由于沉积时背景的差异,有时强振幅反射同相轴所显示的上、下地层表现出截然的差异(图4)。
利用地震属性来突出层序界面的终止反射类型,可以帮助解释人员更方便开展工作。现以余弦相位属性(Cosine of phase)为例,说明地震道属性对分析对象的应用。余弦相位属性是在对地震道做希尔伯特变换后提取瞬时相位后,取相位的余弦得到的。仅包含相位信息,不包含振幅信息,使得较弱振幅的相位信息和较强振幅的相位信息同等体现出来,凸显出弱反射的信息,所以,也称均一化的振幅。余弦相位属性能用于层序地层划分,层序边界确定,砂体进积特征刻画、地震相内部反射结构、反射终止类型的研究等。
地震数据中提取了余弦相位属性,从余弦相位属性剖面来看(图4),突出相位不连续性,顶超现象明显,反射终止特征突出,同相轴连续性较原始剖面好,立体感强,消除了振幅的影响,突出了弱小的相位变化,增强了横向连续性,可以通过相位信息来确定地震内部反射结构,有助于层序界面的划分。在地震层位解释过程中,有利于进行层位的自动追踪。
图4 原始地震剖面(左)和余弦相位属性剖面(右)
3.3 运用地震属性进行构造特征分析
利用地震属性可以突出地震数据里的断裂信息,进行剖面的构造分析。计算原始地震数据的二阶导数(Second derivative),提取数据体的二阶导数属性。导数反映的是数据的变化,一阶导数求的是信号的斜率,表征信号的变化,二阶导数表征信号斜率变化的速度,对数据求二阶导数突出了地震信号中的变化特征,如断裂引起的同相轴突变。由于地震信号是由不同频率、不同振幅的正弦(余弦)信号叠加而成的,对其求二阶导数后,仍然是由正弦(余弦)信号叠加而成的波形信号。
对地震数据进行二阶导数的同时,相位偏移了180°,所以要对二阶导数属性进行级性翻转,相移180°归位。这样,既突出了构造变化特征,又符合地震信号的真实相位。构造平滑属性体的提取是在相移180°属性体上提取的,增加地震反射纵向和横向上的连续性,也改进了存在的边缘检测。
图5 分别是原始地震剖面和经过“二阶导数-相移180°-构造平滑” 后的时间剖面,可以看出,经过多属性“二阶导数-相移180°-构造平滑” 后得到的剖面断裂信息更加突出。
在做断裂分析的流程中,每一步都是以上一步作为母体所生成新的属性体,新的属性体按照流程设计再形成新的属性体,称为多属性研究,这就要求先要对单个属性逐一分析,分析能反映地质特征的有用属性。
在进行断裂分析方面,三维地震相干数据分析是近几年来发展起来的一项新技术[28~30],该方法通过地震道的互相关来检测地震数据体的相似性,突出地震同相轴的不连续性,并在解释小断层、识别断裂系统方面取得了明显的效果。Bahorich M和Farmert在墨西哥湾、北海等地区进行了断层的解释,Kenlicth等人也在特立尼达地区利用相干技术对砂岩储集层进行了预测,但并未涉及储层和沉积相研究,国内也利用相干地震属性来识别和描述断层[29~31]。
图5 原始地震剖面(左)与经“二阶导数-相移180°-构造平滑” 后属性剖面(右)
4 总 结
地震属性的应用已经在油气勘探开发实践中取得了良好的效果,随着具有明显地质意义的属性的不断应用,以及地震属性分析方法的不断提出,如何便于解释人员根据解释的目的在众多的地震属性中选择合适且有效的属性,并且能正确、合理的使用这些属性来指导解释,是解释人员利用地震属性进行地震解释工作的关键所在。解释人员需要利用经验或数学方法,优选出对所预测目标最敏感的、个数最少的地震属性或多个地震属性组合,可以提高地震解释的精度,从而开辟了地震油气勘探研究的新途径。
参考文献
[1]赵政璋,赵贤正,王英民,等.储层地震预测理论与实践[M].北京:科学出版社,2005.
[2]陆基孟主编.地震勘探原理[M].东营:石油大学出版社,2004,312~339.
[3]Taner M T著,隗寿东摘译.地震属性[J].油气地球物理,2006,4(1):55~59.
[4]Taner M T,Koehler F,Sheriff R E.Complex seismic trace analysis.Geophysics,1979,49:344~352.
[5]Taner M T,Sheriff R E.Application of amplitude,frequency,and other attributes to stratigraphic and hydrocarbon deter-mination.In:C.E.Payton(ed.,).Seismic Stratigraphy-Applications to Hydrocarbon Exploration.American Associa-tion of Petroleum Geology,1977:301~327.
[6]毛凤鸣,戴靖主编.复杂小断块石油勘探开发技术[M].北京:中国石化出版社,2005:1~100.
[7]于建国,姜秀清.地震属性优化在储层预测中的应用[J].石油与天然气地质,2003,24(3):291~294.
[8]陈遵德.储层地震属性优化方法[M].北京:石油工业出版社,1998.
[9]刘文岭,等.多信息储层预测地震属性提取与有效性分析方法[J].石油物探,2002,41(1):100~106.
[10]Brown L F,et al.Principles of seismic stratigraphic interpretation[M].IHRDC,1979.
[11]Lyons W J,Herrmann F J,Grotzinger J.Singularity analysis:A tool for extracting lithologic and stratigraphic content fromseismic data[A].71st Ann.Interat Mtg.,Soc.Expl.Geophys.Expanded Abstracts,2001.
[12]Sidney.Seismic attribute technology for reservoir forecasting and monitoring[J].The Leading Edge,1997,16(5):445~456.
[13]Ruben D.Complex reservoir characterization by multlparameter constrained inversion[ J].Reserch Workshop on ReserviorGeophysics.1998.
[14]Mallat S,HwangW L.Singularity detection and processing with wavelets[J].IEEE Transactions on InformationTheory,1992.
[15]Russell B,Hampson D,et al.Multiattribute seismic analysis[J].The Leading Edge,1997,16(10):1439~1443.
[16]Brown A R.Seismic attributes and their classification[J].The leading edge,1996.
[17]Michelena R J.Similarity analysis:A new tool to summarize attribute information[J].The Leading Edge,1998.
[18]Barnes A E.Seismic attributes past,present and future [A].Expanded Abstracts of 69th Annual Internat SEGMtg,1999.
[19]Lazaratos S K,Rector,J W,Harris,J M,et al.High-resolution imaging with cross-well reflection data[A].61th SEGmeeting expanded abstracts,1991.
[20]Schaack M V,et al.High-resolution cross-well imaging of a West Texas carbonate reservoir:Wave field analysis andtomography[A].62th Annual Meeting of SEG,America.1992.
[21]Marfurt K.3D seismic attributes using a semblance-based Coherency algorithm[J].Geophysics,1998.
[22]Latimer R B,Van Riel P.Integrated seismic reservoir characterization and modeling:A Gulf of Mexico 3D case history[C].Paper Submitted for GCSSEPM 1996 Research Conference,1996.
[23]Carcione J M,Tinivella U.Bottom simulating reflectors seismic velocities and AVO effects[J].Geophysics,2000,65(1):54~67.
[24]倪逸,等.储层抽气预测中地震属性优选问题探讨[J].石油地球物理勘探,1999,34(6):614~625.
[25]陈军,陈岩.地震属性分析在储层预测中的应用[J].石油物探,2001,40(3):94~99.
[26]牛彦良,等.地震特征参数的统计分析方法及应用[J].大庆石油地质与开发,1993,12(3):1~4.
[27]王宝珍,杨文采,等.用改进的遗传算法进行地震波阻抗反演研究[J].石油地球物理勘探,1998,33(2):258~264.
[28]Bahorich M,Farmert S.3-D seismic discontinuity for faults and stratigraphic features~the coherence cube.The LeadingEdge,1995,14(10):1053~1058.
[29]李玲,冯许魁.用地震相干数据体进行断层自动解释.石油地球物理勘探,1998,33(增刊1)
[30]佘德平,曹辉,等.应用三维相干技术进行精细地震解释.石油物探,2000,39(2):83~88.
[31]Kenlicth,Davies D K,et al.Flow unit modeling in complex reservoirs.1996 AAPG Annual Meeting,Volume 5.San Di-ego,CA,USA,May 1996:336.
Study on Seismic Attribute Technique and its Application in Seismic Interpretation
Nie Xin
(Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:Seismic attributes underline seismic information from different aspects,which havegreat advantages in dividing seismic facies,improving quality of seismic data,detecting fault aswell as identifying stratigraphic formation ending mode,including onlap,toplap and truncation.Through the practical application in some study area,it can easily tell that graphic equalizer at-tribute can improve the seismic resolution very well,and the cosine phase attribute is much betterin define the sequence interface and discontinuity information than the original seismic data.U-sing multi -attribute combinations to analyze the fracture can tell apart the micro-fracture whichis hard to observe from the seismic profile.
Key words:Seismic attribute Seismic profile Geological interpretation
信号处理中的形态学物理意义?结构元素怎么创建?为什么提示说结构元素只能是0和1??
对信号进行分析时通常采用传统的傅立叶变换方法,傅立叶变换是时域和频域相互转换的数学工具,从物理意义上讲其实质是将信号分解成许多不同频率的正弦波的叠加。这样我们可以把对波形函数的研究转化为对其变换的研究。当信号中混杂着噪声时,通常的方法是将混杂着噪声的信号变换到频域,根据有用信号和噪声在频域所占的频段不同,通过低通、高通、带通或带阻滤波器对噪声加以滤除,再进行信号的重构,恢复原信号,但现实中的噪声和有用信号通常在频域中是分不开的,例如随机噪声、白噪声等。基于图象或信号直观特点的数学形态学,在图象处理领域取得了广泛的应用。它摒弃了传统的数值建模及分析的观点,从集合的角度来刻画和分析图象。其研究图象几何结构的基本思想是利用一个结构元素去探测一个图象,看是否能够将这个结构元素很好的填放在图象的内部,同时验证填放结构元素的方法是否有效。你的结构元素是平面的,只有0和1两种值。即使处理图像一般也是整型的(比如uint8),所以一般先将其转为整型或逻辑型再处理即可s2=logical()%这是逻辑型的(二值图像),你也可以用uint8转为8位非负整型(灰度或彩色图像)s3=imdilate(s2,s2,'full')。
网友评论
最新评论
从集合的角度来刻画和分析图象。其研究图象几何结构的基本思想是利用一个结构元素去探测一个图象,看是否能够将这个结构元素很好的填放在图象的内部,同时验证填放结构元素的方法是否有效。你的
Nie Xin(Guangzhou Marine Geological Survey,Guangzhou,510760)Abstract:Seismic attributes underline seismic information from different aspects,whic
发现的小断层和微断裂都可以被突显出来。关键词 地震属性 地震剖面 地质解释1 地震属性概念及历史地震属性是指叠前或叠后的地震数据,经过数学推导变换出的关于地震波几何形态、运动学特征、动力学特征以及统计学特征的特殊值。它们是地下地质构造
法有水平叠加、保持振幅叠加、DMO叠加。水平叠加是建立在水平层状介质模型之上的,当地层具有倾角时,CMP道集数据不对应地下界面同一反射点上的信息,动校正叠加后也不能形